

MER Vision Data Analysis: Dust Concentration of Mars Dust Devils

2007 NASA Academy at Glenn Final Presentation August 10, 2007

Rebecca Arvanites
P.I. Geoffrey Landis

- I. Introduction
- II. Problem Definition
- III. Approach
- IV. Results
- V. Conclusions
- VI. References
- VII. Acknowledgements

I. Introduction Dust on Mars

- Martian dust: very fine-grained, adheres easily to surfaces
- Effects the solar spectrum and intensity
 - Important for designing solar cells
- Dust devils an interesting phenomenon
 - Swirling vortices of air that lift and transport dust
 - More frequent in spring and summer
 - Cleaned dust off Mars rover solar cells

I. Introduction MER Navcam

- Looking for dust devils
 - 21-frame movies, 7 20 minutes
 - Downlink compressed thumbnail images to check for dust devils
 - If dust devil present downlink entire sequence
- Navcam rad-cal images are digital light intensity measurements

II. Problem Definition Investigating Dust Concentration

- Investigate Dust Concentration of Mars dust devils
 - Examine dust opacity, τ
 - How does τ vary according to position?
 - How does τ change in time as dust devil develops?

II. Problem Definition Investigating Dust Concentration

- Since midterm poster session:
 - How is dust devil τ different from τ of the sky?
 - Distinguish dust devil in front of the sky from the background
 - Calculations without the assumption of same optical properties for dust devil dust as atmospheric dust

III. Approach Optical Analysis

- To determine the opacity/concentration of dust in the dust devil
 - Compare the intensity of light seen through the dust devil with the intensity of light not passing through the dust devil
- Beer's Law describes the decrease in intensity due to the opacity, τ, of the dust
 - $I_{dust devil} = I_{ground} e^{-\tau}$

III. Approach Optical Analysis

- Accounting for light scattered in from the sky, total intensity is a weighted combination of light reflected from the sky and the ground:
 - $I_{\text{dust devil}} = I_{\text{sky}} + (I_{\text{ground}} I_{\text{sky}})e^{-\tau}$

•
$$\tau = \ln \left[\left(I_{\text{ground}} - I_{\text{sky}} \right) / \left(I_{\text{dust devil}} - I_{\text{sky}} \right) \right]$$

MASA III. Approach Calculating t

- Select pixels from image for intensity samples:
 - ground
 - sky,
 - I_{dust devil} (with ground, not sky in the background)
- And more rigorous:
 - I_{sd} (dust devil in front of the sky)

Legend ground l_{sky,} dust devil

III. Approach Data Selection

- 1. To select data points from images, need to look at the enhanced image to find dust devil
- 2. Then get the actual data values from the non-enhanced image- tedious data selection process

1.

Time-variable features enhanced

image by Mark Lemmon, Texas A&M

2.

Radiometrically calibrated

III. Approach Data Selection

 Developed a simple GUI (Graphical User Interface) to aid in data selection and

processing

Allows user to open an image, select a block of pixels, and then save the data values with the average and a description in an excel-compatible format

🎂 MER Data	Analysis 🔳 🗖 🔀			
<u>F</u> ile				
Pixel (x,y)				
20	30			
to Pixel (x,y)				
25	35			
DN Intensity				
6,078				
Sky				
Ground	Save Data			
O Dust Devil				
Status Messages				
Ok, data loaded				
Add Note				
n/a				

III. Approach Displaying Data

- Initial 1-D (horizontal distribution) results- not a clear presentation of data
- Wanted to present a clear visualization of τ distribution in dust devils

 Coded a .PNG image encoder to write images pixel by pixel

(IV. Early Results) **Tau Distribution**

III. Approach Making New Images

- Read original image
- Get intensity values
 - I_{sky}: filter intensities above 5000, take average
 - I_{ground}: from previous frame
 - I_{dustdevil}: subtract to find change from last frame
- Calculate τ for each pixel
- Display algorithm
 - Display color by τ value

- Distinguishing dust devil in front of the sky
- More rigorous
 calculations not
 assuming same
 properties for
 dust in dust devil
 as in atmosphere

Sol 640, frames 1 and 2

Showing τ of the sky and the dust devil

Sol 640, frames 1-3

- Showing τ of the sky and the dust devil
- About 10-20%difference

		Avg Dust	Avg Sky	Tau
sol	frame	Devil Tau	Tau	Difference
640	1	0.12263692	0.1281357	-0.005499
640	1	0.12651319	0.13973	-0.013217
640	2	0.13820017	0.2116821	-0.073482
640	3	0.19402165	0.177779	0.0162427
640	4	0.13292625	0.0897636	0.0431627

V. Conclusions

- Expected dust devil to be more opaque and have τ larger than sky τ
- Very similar τ values for sky and dust devil
- Different results for different frames of the dust devil images
 - Could that measurements
 are small and sensitive so there is a lot of noise
 - Or very sensitive to selection of pixel samples for sky, ground, especially around the horizon area

VI. References

- Arvidson, R.E. et al. 'Overview of the Spirit Mars
 Exploration Rover Mission to Gusev Crater: Landing site
 to Backstay Rock in the Columbia Hills.' <u>Journal of</u>
 <u>Geophysical Research</u>. Vol. 111. 2006.
- Greeley, Ronald et al. 'Active Dust Devils in Gusev Crater, Mars.' <u>Journal of Geophysical Research</u>. Vol. 111, 2006.
- Landis, Geoffrey. 'Mars Dust-Removal Technology.'
 Journal of Propulsion and Power. Vol. 14. 1998.
- Landis, Geoffrey. 'Measurement of the Settling Rate of Atmospheric Dust on Mars by the MAE instrument on Mars Pathfinder. <u>Journal of Geophysical Research</u>. Vol. 111. 2000.

VII. Acknowledgements

- Geoffrey Landis
- Massachusetts Space Grant Consortium
- NASA Academy Staff
- Kamara Brown
- Michael Lamberty
- Dr. David Kankam

